\(\begin{array}{lll|lll} x^a & \Rightarrow & x.\mathrm{pow(a)} \\\sin\, x & \Rightarrow & x.\mathrm{sin} & \arcsin\,x & \Rightarrow & x.\mathrm{asin} \\\cos\,x & \Rightarrow &x.\mathrm{cos} & \arccos\,x & \Rightarrow & x.\mathrm{acos} \\\tan\,x & \Rightarrow & x.\mathrm{tan} & \arctan\,x & \Rightarrow & x.\mathrm{atan} \\\ln\,x & \Rightarrow & x.\mathrm{ln} & e^x & \Rightarrow & x.\mathrm{exp} \\x^2 & \Rightarrow & x.\mathrm{sqr} & \sqrt{x} & \Rightarrow & x.\mathrm{sqrt} \\ x^3 & \Rightarrow & x.\mathrm{cubic} & \sqrt[3]{x} & \Rightarrow & x.\mathrm{cbrt} \\ \\\pi \textrm{ number}& \Rightarrow & \mathrm{pi} & e \textrm{ number} & \Rightarrow & \mathrm{euler} \\\end{array}\)
Use a period (.) as a decimal separator.
Example: Let's solve the following system of equations.
\( \begin{matrix} x^2+y^{2.5}=4 \\ y+e^{x}=1 \end{matrix}\)
\( \begin{matrix} f_1(x,y)=x^2+y^{2.5}-4=0 \\ f_2(x,y)=y+e^{x}-1=0 \end{matrix}\)
takes the form of the equation. From these equations;
\(f_1(x,y)\) : x.sqr+y.pow(2.5)-4 ,
\(f_2(x,y)\) : y+x.exp-1
is written. As the start of iteration, typing \(x_0=1.0\), \(y_0=-1.7\) for example and clicking "Calculate" will give us the result vector. Some equations can have more than one solution. These solutions can be reached with different initial values.