Kenan KILIÇASLAN

  • Friction Loss
  • Equation Solve
  • Differential Equation
    Calculations Equations

1st Order Differential Equation Solution

Solution of first-order differential equations in the form of $\displaystyle {\frac{dy}{dx}}=f(x,y)$ or $\displaystyle {y'}=f(x,y)$ is made. Use the $x$ and $y$ variables. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, type pow (x, 2) for $x^2$.

The differential equation you want to solve:
$\displaystyle {\frac{dy}{dx}}=f(x,y)=$
Formula:
Necessary boundary conditions for solution:
$x_0=$
$y_0=$
The desired $x$ value to be found:
$x_1=$
Increment $\Delta x=$
Functions to be used in equations:
\(\begin{array}{lll|lll} t^a & \Rightarrow & \mathrm{pow(t,a)} \\\sin\, t & \Rightarrow & \mathrm{sin(t)} &\cos\,t & \Rightarrow & \mathrm{cos(t)} \\\tan\,t & \Rightarrow &\mathrm{tan(t)} &\ln\,t & \Rightarrow & \mathrm{log(t)} \\e^t & \Rightarrow & \mathrm{exp(t)} &\left|t\right| & \Rightarrow & \mathrm{abs(t)} \\\arcsin\,t & \Rightarrow & \mathrm{asin(t)} &\arccos\,t & \Rightarrow & \mathrm{acos(t)} \\\arctan\,t & \Rightarrow & \mathrm{atan(t)} &\sqrt{t} & \Rightarrow & \mathrm{sqrt(t)} \\ \\\pi & \Rightarrow & \mathrm{pi} &e \mathrm{ number} & \Rightarrow & \mathrm{euler} \\\ln\,2 & \Rightarrow &\mathrm{LN2} & \ln\,10 & \Rightarrow & \mathrm{LN10} \\\log_{2}\,e & \Rightarrow & \mathrm{Log2e} & \log_{10}\,e & \Rightarrow & \mathrm{Log10e} \end{array}\)
beyaz_sayfa_en_alt_oval

Documents    Articles    Equations    Calculations    Unit Conversion    Contact

Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning   



Kenan KILICASLAN 2024© Copyright.       Designed by Nuit