Kenan kılıçaslan

  • Friction Loss
  • Equation Solve
  • Differential Equation
    Hesap Modülleri Pipe Calculations

Friction Loss Calculation in Piping Systems

Friction losses in different types of pipes are calculated based on the temperature of the fluid. Currently, the available fluid options are limited to water and hydrochloric acid (HCl).

Fill in the form below.
Fluid :
Pipe type :
Fluid temp. : °C
Nominal diameter :
Flow rate :
Friction loss : /m
Explanation :
Reynolds Number (Formula \ref{Re}), \begin{equation}\label{Re} Re=\frac{vD}{\nu}=\frac{\rho vD}{\mu} \end{equation} \(Re\) is the Reynolds Number,
\(v\) is the velocity [m/s],
\(D\) is the inner diameter [m],
\(\nu\) is the kinematic viscosity [m2/s]
\(\rho\) is the density [kg/m3],
\(\mu\) is the dynamic viscosity [Pa.s]

Laminar flow in pipes \(Re<2500\) (Formula \ref{lam}), \begin{equation}\label{lam} f=\frac{64}{Re} \end{equation} The Colebrook–White equation is used for turbulent flow (Re> 4000).(Formula \ref{eu_Colebrook}) \begin{equation}\label{eu_Colebrook} \frac{1}{\sqrt{f }}=-2\log \left ( \frac{2.51}{Re\sqrt{f}}+\frac{\varepsilon /D}{3.71} \right ) \end{equation}
Friction loss along the pipe is calculated using the Darcy–Weisbach equation.
\begin{equation}\label{darcy} \displaystyle{h_{f}=f\displaystyle\frac{L}{D}\displaystyle\frac{v^{2}}{2g}} \qquad \text { mWG or }\qquad \displaystyle{\Delta P=f\displaystyle\frac{L}{D}\displaystyle\frac{\rho v^{2}}{2} }\quad \text { Pa} \end{equation} Here,
\( f\) is the dimensionless unit friction coefficient,
\( Re\) is the dimensionless reynolt number,
\(\varepsilon\) is the Roughness[m],
\(L\) is the pipe length[m],
\(\rho\) is the density [kg/m3].
beyaz_sayfa_en_alt_oval

Documents    Articles    Equations    Calculations    Unit Conversion    Contact

Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning   



Kenan KILICASLAN 2024© Copyright.       Designed by Nuit