Kenan kılıçaslan

  • Friction Loss
  • Equation Solve
  • Differential Equation
    Hesap Modülleri Pipe Calculations

Pipe Friction Loss Calculation

Friction losses of various pipes are calculated depending on the fluid temperature. For now, only water and HCl are calculated as fluid.

Fill in the form below.
Fluid :
Pipe type :
Fluid temp. : °C
Nominal diameter :
Flow rate :
Friction loss : /m
Explanation :
Reynolds Number (Formula \ref{Re}), \begin{equation}\label{Re} Re=\frac{vD}{\nu}=\frac{\rho vD}{\mu} \end{equation} \(Re\) is the Reynolds Number,
\(v\) is the velocity [m/s],
\(D\) is the inner diameter [m],
\(\nu\) is the kinematic viscosity [m2/s]
\(\rho\) is the density [kg/m3],
\(\mu\) is the dynamic viscosity [Pa.s]

Laminar flow in pipes \(Re<2500\) (Formula \ref{lam}), \begin{equation}\label{lam} f=\frac{64}{Re} \end{equation} The formula used is the Colebrook – White equation for turbulent flow (Re> 4000).(Formula \ref{eu_Colebrook}) \begin{equation}\label{eu_Colebrook} \frac{1}{\sqrt{f }}=-2\log \left ( \frac{2.51}{Re\sqrt{f}}+\frac{\varepsilon /D}{3.71} \right ) \end{equation}
The friction loss occurring along the pipe is found from the Darcy-Weisbach equation.
\begin{equation}\label{darcy} \displaystyle{h_{f}=f\displaystyle\frac{L}{D}\displaystyle\frac{v^{2}}{2g}} \qquad \text { mWG or }\qquad \displaystyle{\Delta P=f\displaystyle\frac{L}{D}\displaystyle\frac{\rho v^{2}}{2} }\quad \text { Pa} \end{equation} Here,
\( f\) is the dimensionless unit friction coefficient,
\( Re\) is the dimensionless reynolt number,
\(\varepsilon\) is the Roughness[m],
\(L\) is the pipe length[m],
\(\rho\) is the density [kg/m3].
beyaz_sayfa_en_alt_oval

Documents    Articles    Equations    Calculations    Unit Conversion    Contact

Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning   



Kenan KILICASLAN 2024© Copyright.       Designed by Nuit