Kenan kılıçaslan

  • Friction Loss
  • Equation Solve
  • Differential Equation

Circle-Ellipse Intersection

Expressing the equation of the given ellipse in standard form. \begin{equation} \label{ellipse} Ax^2+Bxy+Cy^2+Dx+Ey+F=0 \end{equation} Expressing the equation of the given circle in standard form. \begin{equation} \label{cember} \left ( x-a \right )^2+\left ( y-b \right )^2=r^2 \end{equation} Parametric transformation of the circle: \begin{equation} \label{x} x=a + r \frac{1-t^2}{1+t^2} \end{equation} \begin{equation} \label{y} y= b + r \frac{2t}{1+t^2} \end{equation} Equations \ref{x} and \ref{y} are substituted into the ellipse equation \ref{ellipse}, obtaining a fourth degree equation. The real number roots of this fourth degree equation give the value of the intersection \(t\). From the \(t\) values ​​found in the fourth degree equation, \(x\) and \(y\) are found with the above formula.

The result gives us the intersection point of the ellipse and the circle.
beyaz_sayfa_en_alt_oval

Documents    Articles    Equations    Calculations    Unit Conversion    Contact

Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning   



Kenan KILICASLAN 2024© Copyright.       Designed by Nuit